THE CONFORMATION OF 4-THIOURIDINE-5'-PHOSPHATE IN SINGLE AND DOUBLE STRANDED POLYNUCLEOTIDES

K. H. SCHEIT and W. SAENGER

Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, Germany

Received 21 February 1969

1. Introduction

In the last two years some work was published concerning the physical, chemical and biological properties of polynucleotides and $E.\ coli$ tRNA containing s⁴UMP * [1-1]]. There is still remaining hope that any of the properties of s⁴UMP would explain its occurrence in tRNA. In this paper are described first attempts to determine the conformation of s⁴UMP in single and double stranded polynucleotides. For the investigation of this conformational problem two techniques were combined: NMR-spectroscopy and ORD.

2. Materials and methods

The preparation and characterisation of s⁴UMP [5], s⁴Ups⁴U [4], poly (U,s⁴U) [8] and [poly(U,s⁴U)] [poly A] [8] have been reported elsewhere. NMR-spectra were recorded on a Varian HA 100 instrument using D_2O containing t-butanol (1%, v/v) as solvent. Chemical shifts have been measured in cycles per second (cps) downfield from t-butanol with an accuracy of ± 2 cps relying on chart calibration. ORD spectra were recorded on a Cary 60 spectropolarimeter at low scan speed. The measurements were done at 25° in 0.1 M phosphate buffer pH 7.4. The cell path length was 1 cm and the optical density at λ_{max} of the sam-

* Abbreviations: s⁴UMP, 4-thiouridine-5'-phosphate; s⁴Urd, 4-thiouridine; s⁴Ups⁴U, 4-thiouridylyl-(3'5')-4-thiouridine; poly (U,s⁴U), copolymer consisting of UMP and s⁴UMP.

ples was in the range of 0.30–0.80. The rotation is given by $[m] = \alpha/[s^4UMP]$, where α is the rotation per centimeter and $[s^4UMP]$ is given in Moles/1.

3. Results and discussion

Fig. 1 shows the NMR-spectra of s⁴Urd and s⁴UMP. It is clearly seen from this representation that the 5'-phosphoryl group in s⁴UMP causes a downfield shift of the H₆-signal compared to the H₆-signal in s⁴Urd. According to recent NMR studies [12] this means that s⁴UMP in solution exhibits anti-conformation, since only in that case the phosphate residue is able to influence the H₆-atom. In table 1 the chemical shifts of the proton signals in question are listed. The differences of corresponding signals between s⁴Urd and s⁴UMP are significant. It is interesting to notice that no concentration dependence of the resonance signals neither in s⁴Urd nor in s⁴UMP could be observed.

The ORD-spectrum of s^e UMP displays a negative Cotton effect in the region of the UV-absorption maximum (330 m μ). The negative Cotton effect at 320 m μ seems to indicate anti conformation of s^4 UMP since from NMR-spectro_copy it followed that s^4 UMP exists in solution in anti-conformation. s^4 Ups 4 U and poly (U $_{2,5}$, s^4 U) show likewise ORD-spectra with negative Cotton effects. The amplitude of the Cotton effect is much greater in s^4 Ups 4 U where two 4-thiouracil residues are adjacent to each other as compared to poly (U $_{2,5}$, s^4 U) in which 4-thiouracil has uracil as next neighbours. The sign of

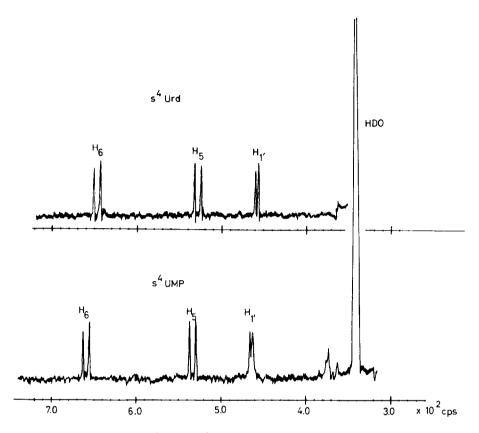


Fig. 1. HA 100 NMR-spectra of s⁴Urd and s⁴UMP. Details are described under materials and methods.

the Cotton effect obviously indicates that s^4UMP in oligonucleotides exists in anti conformation. The ORD curve of [poly $(U_{2,5}, s^4U)$] [poly A] turned out to be completely different exhibiting a positive Cotton effect in the region $370-335~\text{m}\mu$. This behaviour was also observed with [poly (U_5, s^4U)] [poly A] and [poly (U_8, s^4U)] [poly A]. It is known from a recent X-ray

diffraction study on crystalline s⁴Urd that this nucleoside has syn conformation with a torsion angle ϕ_{CN} = +83° [13]. Our experiments presented above, however, indicate the anti conformation (although we have not been able to estimate the torsion angle ϕ_{CN}) of s⁴UMP in oligo- and polynucleotides in solution. The positive sign of the principal Cotton effect in the

Table 1
Chemical shifts of s⁴Urd and s⁴UMP protons in cps downfield from t-butanol.

	Н ₆	H ₅	H ₁	Concentration (Mol/l)
s ⁴ Urd	651;643	532; 524	460; 457	0.1
stora	652; 645	532; 524	461;458	0.3
s ⁴ UMP	664;657	538; 531	467; 563	0.1
	662; 656	538; 530	467; 463	0.3
$[s^4UMP-s^4URD]$	13; 14	6;7	7;6	0.1

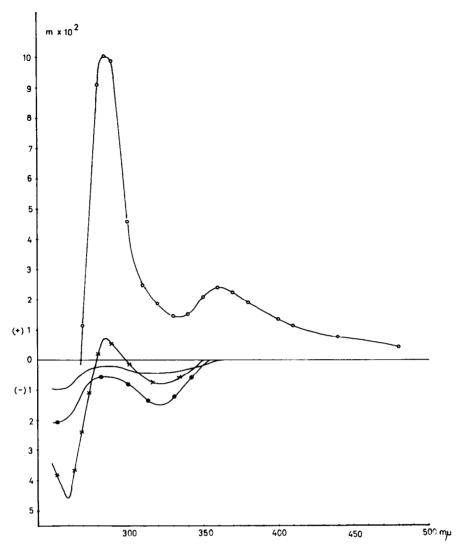


Fig. 2. ORD-spectra of s⁴UMP (——), poly $(U_{2,5}, s^4U)$ (x-x-x), s⁴Ups⁴U ($\bullet - \bullet - \bullet$) and [poly $(U_{2,5}, s^4U)$] [poly A] $(\circ - \circ - \circ)$. Details are described under materials and methods.

ORD-curve of [poly (U, s⁴U)] [poly A] demonstrates that the conformation of s⁴UMP has to be different from that of single stranded polynucleotides. The crystal structure of s⁴Urd, with its unusual arrangement of syn s⁴Urd molecules in form of somewhat displaced stacks forced us to assume that s⁴UMP in double stranded structures prefers a similar, syn conformation. This assumption gains further support from recent ORD studies of nucleotides and nucleotides where several authors could show that a change

in the sign of a Cotton effect corresponds to a conformational change [14-16].

Acknowledgements

The authors are grateful to Drs. W.Maass, T.M.Jovin and J.R.Runyon for many helpful discussions. The authors are indebted to Prof. F.Cramer for his encouragement and constant interest.

References

- [1] M.N.Lipsett, J. Biol. Chem. 240 (1965) 3975.
- [2] M.N.Lipsett and B.P.Doctor, J. Biol. Chem. 242 (1967)
- [3] M.N.Lipsett, J.S.Norton and A.Peterkofsky, Biochemistry 6 (1967) 855.
- [4] K.H.Scheit, Biochim. Biophys. Acta 166 (1968) 285.
- [5] K.H.Scheit, Chem. Ber. 101 (1968) 1141.
- [6] K.H.Scheit, Angew. Chem. Intern. Ed. 6 (1967) 180.
- [7] K.H.Scheit, Tetrahedron Letters (1967) 113.
- [8] K.H.Scheit and E.Gaertner, Biochim. Biophys. Acta, in press.

- [9] M.Uziel, Biochim. Biophys. Res. Commun. 25 (1966) 105.
- [10] P.Cerutti, J.W.Holt and N.Miller, J. Mol. Biol. 34 (1968) 505.
- [11] M.Pleiss, H.Ochiai and P.A.Cerutti, Biochim. Biophys. Res. Commun. 34 (1969) 70.
- [12] M.P.Schweizer, H.P.Brown, P.O.P.Ts'o and S.P.Hollis, J. Am. Chem. Soc. 90 (1968) 1042.
- [13] W.Saenger and K.H.Scheit, Angew. Chem. 81 (1969).
- [14] T.R.Emerson, R.J.Swan and T.L.V.Ulbricht, Biochemistry 6 (1967) 843.
- [15] W.A.Klee and S.H.Mudd, Biochemistry 6 (1967) 988.
- [16] W.Guschlbauer and Y.Courtois, FEBS Letters 1 (1968) 183.